Identification of a de novo DYNC1H1 mutation via WES according to published guidelines
نویسندگان
چکیده
De novo mutations that contribute to rare Mendelian diseases, including neurological disorders, have been recently identified. Whole-exome sequencing (WES) has become a powerful tool for the identification of inherited and de novo mutations in Mendelian diseases. Two important guidelines were recently published regarding the investigation of causality of sequence variant in human disease and the interpretation of novel variants identified in human genome sequences. In this study, a family with supposed movement disorders was sequenced via WES (including the proband and her unaffected parents), and a standard investigation and interpretation of the identified variants was performed according to the published guidelines. We identified a novel de novo mutation (c.2327C > T, p.P776L) in DYNC1H1 gene and confirmed that it was the causal variant. The phenotype of the affected twins included delayed motor milestones, pes cavus, lower limb weakness and atrophy, and a waddling gait. Electromyographic (EMG) recordings revealed typical signs of chronic denervation. Our study demonstrates the power of WES to discover the de novo mutations associated with a neurological disease on the whole exome scale, and guidelines to conduct WES studies and interpret of identified variants are a preferable option for the exploration of the pathogenesis of rare neurological disorders.
منابع مشابه
Syndromic Intellectual Disability Caused by a Novel Truncating Variant in AHDC1: A Case Report
Mutations in the AHDC1 gene are associated with the Xia-Gibbs syndrome (XGS), a sporadic genetic disorder characterised by developmental delay, intellectual disability, hypotonia, obstructive sleep apnoea, dysmorphic facial features, and cerebral malformations with plagiocephaly. Here we report the case of a 13-year-old Colombian female patient with a history of developmental delay, speech dela...
متن کاملA novel de novo mutation in DYNC1H1 gene underlying malformation of cortical development and cataract
Mutations in DYNC1H1, the gene encoding the largest cytoplasmic dynein, have been associated with a wide spectrum of neurodegenerative disorders. In this study, we describe a child in whom a novel de novo likely pathogenic variant in the motor domain of DYCN1H1 was identified through whole exome sequencing. The affected child presented with severe neurological symptoms and more extensive cortic...
متن کاملExome Sequencing Identifies DYNC1H1 Variant Associated With Vertebral Abnormality and Spinal Muscular Atrophy With Lower Extremity Predominance.
BACKGROUND Molecular diagnosis of the distal spinal muscular atrophies or distal hereditary motor neuropathies remains challenging because of clinical and genetic heterogeneity. Next generation sequencing offers potential for identifying de novo mutations of causative genes in isolated cases. PATIENT DESCRIPTION We present a 3.6-year-old girl with congenital scoliosis, equinovarus, and L5/S1 ...
متن کاملThe Difference in Initial Leukocyte Count, Bone Marrow Blast Cell Count and CD 34 Expression in Patients with Acute Myeloid Leukemia with and without NPM1 gene Mutation
Background: Mutation in NPM1 gene has been reported to be the most common genetic mutation in de novo acute myeloid leukemia (AML). AML with NPM1 gene mutation usually presents with higher initial leukocyte and blast cell counts and negative CD34 expression. We aimed to investigate the difference of initial leukocyte counts, bone marrow blast cell counts and expression of CD34 among patients wi...
متن کاملIntegrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes
De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016